Harnessing the power of big data to understand water futures – remote sensing and spatial analysis

Written by peter@uwcs.com.au

June 1, 2014

 

Al-Hasa-5-featThe water industry is presented with a new era of opportunities that are created by Big Data Analysis of spatial and remotely sensed or obtained information. The collage of images of lakes in the Saudi Arabian desert presented in Figure 1 provides a compelling example of the capability and potential. The digital elevation model was created by combining SPOT satellite images with elevation data obtained from the Shuttle Radar Topography Mission (SRTM) conducted by NASA (National American Space Agency).

Al_Hasa_Contour_regions_and_Sat_overlay265

Figure 1: Combining satellite images with data from the space shuttle to create a digital elevation model of lakes in the Saudi Arabian desert

Additional local observations of water depths and global positions from a field survey were used as a “ground truth” for a digital elevation model (DEM) presented in Figure 2.

Digital elevation model of Al Asfar Lake

Figure 2: Digital elevation model of the Al Asfar Lake system in Saudi Arabia

Figure 2 revealed the characteristics of the network of perched lakes at Al Asfar and has allowed greater understanding of the behaviour of these important desert waterways. This has led to more informed discussions about management of natural resources in a remote environment. This type of enhanced capability to understand natural resources challenges is highlighted by the spatial map of long term rainfall frequencies for Victoria presented in Figure 3.

Average Annual Rain Days1

Figure 3: Longitudinal rainfall frequencies throughout Victoria in Australia

The digital model of rainfall frequencies throughout Victoria was derived from raw climate data sourced from the Australian Bureau of Meteorology and processed using Systems Framework for Big Data developed by Urban Water Cycle Solutions. This type of spatial data is being combined with multiple layers of data and information to better understand a range of challenges and opportunities for management of natural resources. In particular, the Office of Living Victoria is utilising these types of modern Systems Framework techniques to frame policies for management of water resources. However, these techniques reveal a wider range of new frontiers of opportunities for many sectors as shown by the map of expected stormwater from urban surfaces throughout Greater Melbourne by 2050 as shown in Figure 4.

SWrunoff

Figure 4: Expected stormwater runoff from urban surfaces throughout Greater Melbourne in 2050

Figure 4 combines multiple layers of information and analysis which highlights the potential provided by Systems Frameworks of Big Data to understand the future challenges and opportunities for the Stormwater Industry. Whilst the cutting edge Big Data analysis techniques may appear to be challenging to implement and understand, they are highly cost-effective which is likely to eliminate many of the former costs and logistic barriers to greater understanding. Additional examples of the potential of Systems Frameworks are provided in www.urbanwatercyclesolutions.com and important spatial information about Australian climate is provided at www.bom.gov.au.

Dr Peter Coombes is the Managing Director of Urban Water Cycle Solutions and the Chief Scientist at the office of Living Victoria. The assistance of Dr Michael Barry and Mark Colegate in developing the images in this article are gratefully acknowledged.

About
Dr Peter Coombes

Dr Coombes has spent more than 30 years dedicated to the development of systems understanding of the urban, rural and natural water cycles with a view to finding optimum solutions for the sustainable use of ecosystem services, provision of infrastructure and urban planning.

Connect with Peter

Related Articles

Water Regulation, Legislation, Monopoly and Preference for Utility Infrastructure

Water Regulation, Legislation, Monopoly and Preference for Utility Infrastructure

New Journal paper from Peter J Coombes explores the influence of regulation, legislation and monopoly processes on preference for utility supply side infrastructure. The effects of price regulation and preference for utility supply infrastructure on Australian urban water utilities and urban water markets are considered by examination of historical data and models of the future of a case study of the Greater Sydney and Melbourne regions. Interesting read in the context of requests to double water bills and limit user pays pricing

Rainwater harvesting and systems thinking for a better world – release of YouTube Channel

Rainwater harvesting and systems thinking for a better world – release of YouTube Channel

The Essential Rainwater Harvesting Course was created by Peter Coombes of Urban Water Cycle Solutions (https://urbanwatercyclesolutions.com) and Michelle Avis of Verge Permaculture (https://vergepermaculture.ca). First recorded in 2020, a large majority of the course is now being released, for free, on YouTube as part of our shared mission to educate and spread information on rainwater harvesting as widely as possible.

Rethinking responses to the world’s water crises

Rethinking responses to the world’s water crises New journal paper published by Nature Sustainability by the ANU team lead by Quentin Grafton and our colleagues. The world faces multiple water crises, including overextraction, flooding, ecosystem degradation and...

Urban Flood Risks, Water Law and Insurance

Urban Flood Risks, Water Law and Insurance

Urban flood risks, water law and insurance: The intersection of emerging science, practice and authority  By Professor Peter J Coombes Published in Precedent issue 178 - September/October 2023, Journal of the Australian Lawyers Alliance This article discusses the...

SYSTEMS PERSPECTIVE ON CHARACTERISING RESILIENCE IN URBAN WATER MARKETS

SYSTEMS PERSPECTIVE ON CHARACTERISING RESILIENCE IN URBAN WATER MARKETS

Results from two decades of accumulated big data and systems analysis of Greater Melbourne and Sydney was investigated to develop insights into the resilience of each city. The key resilience parameters are distributed water sources and conservation in an urban water market, household welfare, government policy and regulation, pricing strategies, total dam storage and supply of desalinated water. These parameters have different levels of impact and significance across the two cities. Further studies are needed to better define the attributes and benefits of these parameters.

Systems Frameworks of Big Data: Averages, Economics and Policy

Systems Frameworks of Big Data: Averages, Economics and Policy

Systems Frameworks of Big Data: Averages, Economics and Policy Peter J Coombes at the GK Symposium 12 - 13 June 2019 at Noahs at Newcastle Beach Bottom up systems analysis highlights the illusion of averages and economic opportunities for development of government...

Making the Paper: Impact of Averages on Water Modelling

Making the Paper: Impact of Averages on Water Modelling

Making of the paper: Planning resilient water resources and communities: the need for a bottom up systems approach
Michael E Barry and Peter J Coombes. Impact of averages on water modelling.
This paper was awarded the GN Alexander Medal by the Engineers Australia National Committee on Water Engineering. This Medal is usually awarded every 18 months for the best paper in hydrology and/or water resources published in an Engineers Australia publication.
This article presents an overview of the processes leading to making this journal paper.

c