Systems Approach to Understanding Water Quality in Catchments

Written by peter@uwcs.com.au

September 7, 2014

Stream1-featMonitoring of water quality in catchments is often based on monthly or weekly grab sampling at a site over a given length of time. Interpretation of water quality data is then based on threshold criteria and the catchment response or risks evaluated relative to these values.

However, monitoring programs of this nature rarely capture all catchment processes operating at the time of sampling and therefore evaluation of catchment responses is limited. A recent approach to characterising catchment water quality has been the “Snapshot Study”. The Snapshot Study is based on fundamental criteria including categorising catchment landuse, designing a sampling and analysis strategy based on catchment hydrology and knowledge of the climatic conditions before and during the time of sampling. Results from different sourcetracking techniques are then used to compare relative contaminant contributions from mixed landuses. The snapshot study allows numerous sites within a catchment to be sampled and results can be interpreted in the context of the hydrological processes at the time. This provides a water quality “fingerprint” of catchment waterways, whilst allowing an improved evaluation of potential contaminant sources and subsequent waterway health. However, the interpretation of contaminant contributions using different source-tracking techniques resulted in contradiction in several sub-catchments. This was considered an important outcome between sub-catchments and ultimately for the characterisation of water quality in sub-catchments. The monitoring approach is novel and this paper discusses the main outcomes from two snapshot studies, whilst highlighting the complex water quality relationships between land uses and catchments or sub-catchments.

Click here to download the publication

About
Dr Peter Coombes

Dr Coombes has spent more than 30 years dedicated to the development of systems understanding of the urban, rural and natural water cycles with a view to finding optimum solutions for the sustainable use of ecosystem services, provision of infrastructure and urban planning.

Connect with Peter

Related Articles

Urban Flood Risks, Water Law and Insurance

Urban Flood Risks, Water Law and Insurance

Urban flood risks, water law and insurance: The intersection of emerging science, practice and authority  By Professor Peter J Coombes Published in Precedent issue 178 - September/October 2023, Journal of the Australian Lawyers Alliance This article discusses the...

SYSTEMS PERSPECTIVE ON CHARACTERISING RESILIENCE IN URBAN WATER MARKETS

SYSTEMS PERSPECTIVE ON CHARACTERISING RESILIENCE IN URBAN WATER MARKETS

Results from two decades of accumulated big data and systems analysis of Greater Melbourne and Sydney was investigated to develop insights into the resilience of each city. The key resilience parameters are distributed water sources and conservation in an urban water market, household welfare, government policy and regulation, pricing strategies, total dam storage and supply of desalinated water. These parameters have different levels of impact and significance across the two cities. Further studies are needed to better define the attributes and benefits of these parameters.

c