Big Data Surfaces Underpin Systems Analysis

Written by

February 17, 2018

Spatial distribution of household water use across the greater Melbourne region

Using surfaces of Big Data to Underpin Continuous Simulation in Systems Analysis

Following our presentation at WSUD 2018 & Hydropolis 2018, our peer reviewed paper can be downloaded below. This publication is part of a set of new research papers that we recently published including Big Data History Reveals Value of Distributed Solutions and Planning for Water Sensitive Communities – the need for bottom up systems analysis.

This paper outlines Big Data surfaces the underpin continuous simulation in the systems framework that was designed to explore the multiple scale impacts of water, energy, economic and environmental decisions using a bottom up approach to spatial systems analysis. This approach utilises big data layers of local information to create sub-daily surfaces of climate, stormwater runoff, streamflow, finances and urban water demand. These surfaces of information and a multi-scaled framework of processes permit the generation of multi-site synthetic rainfall and associated continuous simulation of urban processes.

This approach underpins the understanding of the multiple scale systems dynamics of water and energy systems. This paper presents the methodology for simulating multi-site rainfall and water demands based on surfaces of climate, demographic, socioeconomic, topography and environmental information. The approach reproduces observed daily, monthly, annual statistics of rainfall and water use at multiple scales. This demonstrates that the method is able to capture the inter-annual persistence and spatial variability of water use and rainfall that exists within the Greater Melbourne and Sydney regions. The systems method was able to adequately estimate regional water demand including the day to day variation, distributions and strong seasonal patterns. The bottom up construct of the Systems Framework can provide robust evaluation of the regional responses of local interventions such as Water Sensitive Urban Design.

The peer reviewed paper is provided here:  Paper


Dr Peter Coombes

Dr Coombes has spent more than 30 years dedicated to the development of systems understanding of the urban, rural and natural water cycles with a view to finding optimum solutions for the sustainable use of ecosystem services, provision of infrastructure and urban planning.

Connect with Peter

Related Articles

Available Storage in Rainwater Tanks – Stormwater Benefits

Available Storage in Rainwater Tanks – Stormwater Benefits

Impact of rainwater tanks on stormwater infrastructure. What is the available storage in rainwater tanks prior to a rain event that is significant to stormwater infrastructure? The use of design storms is current Australian practice for design of stormwater management...

Property Scale Systems Thinking: Full Course

Property Scale Systems Thinking: Full Course

Early bird registration for the Property Scale Systems - Rainwater Harvesting - course by Verge Permaculture and Urban Water Cycle Solutions is open now. Water is a crucial resource increasingly under stress. Yet rainfall, even in arid climates, can make up a sizable...