Systems Framework for Analysis of Policy and Strategy Update

Written by peter@uwcs.com.au

December 10, 2015

A conceptual diagram of traditional deterministic policy process and the policy process using Systems Frameworks with Big Data AnalysisSystems Framework for analysis of policy and strategy

Peter J Coombes and Michael E Barry

Acknowledged by Engineers Australia as one of the best scientific contributions to hydrology and water resources during 2014/15.

The Systems Framework is discussed in many publications focused on describing projects or policies. This presentation provides an overview of the Systems Framework methodologies for analysis of policy, strategy and design developed over the last decade. The framework integrates water cycle, environmental and economic processes from the “bottom up” using all available data and integrating spatial and temporal scales of behaviour. Advances in computing power allowed this quantum process to be underpinned by continuous simulation of local behaviours and Monte Carlo methods. This expansionist approach to analysis reveals hidden challenges and opportunities for urban areas. The Systems Framework can be reliably and robustly applied to detailed and targeted ‘what if’ analyses, including assessments of future water security and economics under a range of climatic and population growth scenarios, and future alternative strategies or policies. The spatial and temporal detail within the Systems Framework allowed understanding, reproduction and testing of the complex interactions between waterways, reservoirs, operations, water demands, water restrictions, energy demands and financial impacts. This methodology includes hind casting of the water cycle and linked economic simulations across historical periods with known financial and resources information. The authors are developing open source and web-enabled applications that will allow greater interaction with the System Framework. This initiative is supported by a number of new science publications.

Paper   Presentation

 

About
Dr Peter Coombes

Dr Coombes has spent more than 30 years dedicated to the development of systems understanding of the urban, rural and natural water cycles with a view to finding optimum solutions for the sustainable use of ecosystem services, provision of infrastructure and urban planning.

Connect with Peter

Related Articles

Water Regulation, Legislation, Monopoly and Preference for Utility Infrastructure

Water Regulation, Legislation, Monopoly and Preference for Utility Infrastructure

New Journal paper from Peter J Coombes explores the influence of regulation, legislation and monopoly processes on preference for utility supply side infrastructure. The effects of price regulation and preference for utility supply infrastructure on Australian urban water utilities and urban water markets are considered by examination of historical data and models of the future of a case study of the Greater Sydney and Melbourne regions. Interesting read in the context of requests to double water bills and limit user pays pricing

Rainwater harvesting and systems thinking for a better world – release of YouTube Channel

Rainwater harvesting and systems thinking for a better world – release of YouTube Channel

The Essential Rainwater Harvesting Course was created by Peter Coombes of Urban Water Cycle Solutions (https://urbanwatercyclesolutions.com) and Michelle Avis of Verge Permaculture (https://vergepermaculture.ca). First recorded in 2020, a large majority of the course is now being released, for free, on YouTube as part of our shared mission to educate and spread information on rainwater harvesting as widely as possible.

Rethinking responses to the world’s water crises

Rethinking responses to the world’s water crises New journal paper published by Nature Sustainability by the ANU team lead by Quentin Grafton and our colleagues. The world faces multiple water crises, including overextraction, flooding, ecosystem degradation and...

Urban Flood Risks, Water Law and Insurance

Urban Flood Risks, Water Law and Insurance

Urban flood risks, water law and insurance: The intersection of emerging science, practice and authority  By Professor Peter J Coombes Published in Precedent issue 178 - September/October 2023, Journal of the Australian Lawyers Alliance This article discusses the...

SYSTEMS PERSPECTIVE ON CHARACTERISING RESILIENCE IN URBAN WATER MARKETS

SYSTEMS PERSPECTIVE ON CHARACTERISING RESILIENCE IN URBAN WATER MARKETS

Results from two decades of accumulated big data and systems analysis of Greater Melbourne and Sydney was investigated to develop insights into the resilience of each city. The key resilience parameters are distributed water sources and conservation in an urban water market, household welfare, government policy and regulation, pricing strategies, total dam storage and supply of desalinated water. These parameters have different levels of impact and significance across the two cities. Further studies are needed to better define the attributes and benefits of these parameters.

Systems Frameworks of Big Data: Averages, Economics and Policy

Systems Frameworks of Big Data: Averages, Economics and Policy

Systems Frameworks of Big Data: Averages, Economics and Policy Peter J Coombes at the GK Symposium 12 - 13 June 2019 at Noahs at Newcastle Beach Bottom up systems analysis highlights the illusion of averages and economic opportunities for development of government...

Making the Paper: Impact of Averages on Water Modelling

Making the Paper: Impact of Averages on Water Modelling

Making of the paper: Planning resilient water resources and communities: the need for a bottom up systems approach
Michael E Barry and Peter J Coombes. Impact of averages on water modelling.
This paper was awarded the GN Alexander Medal by the Engineers Australia National Committee on Water Engineering. This Medal is usually awarded every 18 months for the best paper in hydrology and/or water resources published in an Engineers Australia publication.
This article presents an overview of the processes leading to making this journal paper.

c